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Abstract

Neurodevelopmental disorders are on the rise worldwide, with diagnoses that detect derailment from typical milestones by 3 to 4.5
years of age. By then, the circuitry in the brain has already reached some level of maturation that inevitably takes neurodevelopment
through a different course. There is a critical need then to develop analytical methods that detect problems much earlier and identify
targets for treatment. We integrate data from multiple sources, including neonatal auditory brainstem responses (ABR), clinical cri-
teria detecting autism years later in those neonates, and similar ABR information for young infants and children who also received
a diagnosis of autism spectrum disorders, to produce the earliest known digital screening biomarker to flag neurodevelopmental de-
railment in neonates. This work also defines concrete targets for treatment and offers a new statistical approach to aid in guiding a
personalized course of maturation in line with the highly nonlinear, accelerated neurodevelopmental rates of change in early infancy.

Significance Statement:

Autism is currently detected on average after 4.5 years of age, based on differences in social interactions. Yet, basic building blocks
that develop to scaffold social interactions are present at birth and quantifiable at clinics. Auditory brainstem response tests,
routinely given to neonates, infants, and young children, contain information about delays in signal transmission important for
sensory integration. Although currently discarded as gross data under traditional statistical approaches, new analytics reveal un-
ambiguous differences in ABR signals’ fluctuations between typically developing neonates and those who received an autism
diagnosis. With very little effort and cost, these new analytics could be added to the clinical routine testing of neonates to create
a universal screening tool for neurodevelopmental derailment and prodrome of autism.

Introduction
There is substantial evidence that brain-related developmental
disorders are present perinatally or earlier (1, 2). However, cur-
rently, except for some genetically related disorders, diagnosis
does not occur until there is a delay in acquiring developmental
milestones, by which time the brain circuitry is largely formed.
This precludes “very early intervention,” which could ameliorate at
least some of the pathological course of the disorders (3).

Developmental trajectories traditionally trace physical growth
such as weight, height, and head circumference, according to
standard charts set by the Centers for Disease Control and Pre-
vention and the World Health Organization (4). Other parameters
related to the ways in which infants move, play, emotionally self-
regulate, and socially interact and communicate with others, have

been adopted as possible observable descriptors to flag departure
from expected timely milestones (5, 6). These qualitative crite-
ria, however, miss the opportunity to detect the maturation dif-
ferences much earlier, as many observable social-communication
skills do not emerge until after the first year of life. Their proper
scaffolding depends on the timely maturation of building blocks
of social interactions, including sensory processing, integration,
and the dynamics of sensory-motor transformations. Further-
more, some aspects of detectable behaviors start as normal, be-
coming abnormal only when they persist into later infancy or be-
yond (7, 8).

On average, diagnosis of neurodevelopmental disorders coex-
isting within the spectrum of autism occurs at 4 years and 3
months with 50% of children not diagnosed until age 6. Despite
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Fig. 1. The need for new analytics. (A) Sample data from ABR pooled over multiple trials. Inset shows one trial while time series show the absolute
(positively rectified) responses across trials. (B) Traditional approach is to take epochs of the data and stack up the waveforms to obtain the mean and
standard deviation under an a priori theoretically assumed distribution (e.g. the Gaussian distribution in the inset). The theoretical mean is the black
curve, and the red curve is two standard deviations from the theoretical mean. The data above the red curve is considered superfluous (gross data)
and as such does not enter the analyses. (C) A different approach considering the moment-by-moment fluctuations away from an empirically
estimated mean (Micro-Movement Spikes, MMS, standardized between 0 and 1 to scale out disparate anatomical sizes of e.g. head circumference).
These fluctuations change from window to window (D), shifting in a nonstationary way according to shifts in probability distribution function (PDF).
These PDFs best fit the data in a maximum-likelihood estimation (MLE) sense with 95% CI. Inset zooms in a sample window of fluctuations in (C),
requiring a minimum of 100 peaks to ensure high confidence in the estimation.

much effort, age at diagnosis has improved little over the past cou-
ple of decades (9). Given that earlier therapeutic interventions are
associated with better long-term outcomes (10), a challenge that
we face is detection of affected children as early as possible and
identification of targets for treatment at a very early neurodevel-
opmental age (7).

Recent biological evidence supports the notion that at least
some forms (and probably the majority) of the broad, hetero-
geneous developmental disorders within the autism spectrum
(ASD) are atypical prior to birth, many linked to genetic origins
(11–13). These in turn, may have significant effects on postna-
tal development (14–17). The obstacle to identifying the prena-
tal changes is a lack of dynamic developmental biomarkers be-
cause most of the evidence for prenatal pathology comes from

mostly static postmortem cellular, molecular, and genetic findings
(2, 18).

An accessible type of assessment that is routinely done on new-
borns and that could provide dynamic information changing at
a micro-level, beyond the observational limits of the naked eye,
is the auditory brainstem response (ABR). This test is currently
done as a hearing screening test. However, with little extra time
or cost needed, we could adapt it into a valid screening tool to
forecast neurodevelopmental disorders. A barrier here is the type
of methodology currently in use to analyze ABR waveforms and
their inherent variability.

The ABR waveform produces a Dirac delta-like peak in response
to the input signal consisting of clicks or bursts type of sound
stimuli, and stimulation decibel (dB) level (Fig. 1A inset.) Upon
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repetitions of the sound stimulus (Fig. 1A), the waveforms re-
flecting the ABR are averaged under the theoretical assumption
that the variations in parameters of interest (e.g. peaks’ ampli-
tudes and latencies) distribute normally, and that as such, their
stochastic, moment-to-moment microfluctuations are superflu-
ous, beyond one or two (assumed normal) standard deviations of
the (assumed normal) mean (Fig. 1B). As it turns out, at a micro-
level of inquiry, not all such parameters’ fluctuations distribute
normally, nor are they stationary. To avoid ignoring such varia-
tions, under an a priori imposed theoretical mean, and to cap-
ture the nonstationary and nonlinear nature of the neonatal data,
new analyses call instead for empirical estimation of the most
adequate continuous family of probability distributions that can
more generally characterize the stochastic properties of the pa-
rameters routinely extracted from ABR signals and from other fea-
tures of the data that have been thus far underutilized (e.g. Fig. 1C
and D).

Adopting new methods of analyses that rely on individual
empirical fluctuations rather than on theoretically assumed
population means would also enable personalized characteriza-
tions and cross-sectional analyses of changes over time. In this
sense, we could standardize the waveforms, to scale out pos-
sible allometric effects (e.g. differences in head circumference)
that emerge in early infancy, from nonlinear, rapid, and highly
dynamic changes in patterns of physical growth and individ-
ual neuroanatomical differences across the population (15, 18),
to cross-sectionally examine large cohorts of participants over
time.

Evidence from ABR studies suggests that prenatal maturation
in the central auditory system (19, 20) far precedes other aspects
of sensory-motor maturation, which in turn form the founda-
tion of social interactions and communication. Indeed, as altri-
cial mammals, human babies require a long time of maturation
of sensory-motor control (21, 22), yet at birth the brainstem al-
ready functions to mediate a few survival activities in the neonate
(e.g. breathing, swallowing, excreting, and crying, perhaps as a first
rudimentary form of communicating states of hunger, discomfort,
sleepiness, and so on.)

We combine ABR with clinical data obtained from the neonates
and young infants to study anew empirically estimated sig-
natures of microvariations informed by ASD diagnosis. Un-
der this new personalized statistical framework, we reveal im-
portant individual features that automatically and unambigu-
ously forecast departure from typical neurodevelopment at the
earliest time after birth. This digital approach can be easily
incorporated into current ABR-based hearing screening tools,
to flag neurodevelopmental derailment at birth, and at large
scale.

Methods
Experimental model and subjects’ details
The research protocol was approved by the Institutional Review
Boards of involved institutions and written informed consents
were obtained from parents/guardians of all participants.

A total of three data sets were used in this study spanning
from neonatal stages to early childhood. The first two sets are
from neonates. The third set spans from 1.8 to 6.8 years of age.
The first set comprised 233,915 neonates from the neonatal inten-
sive care unit (NICU) and the well-baby nursery (WBN) including
well balanced numbers of males and females. This set comprised
the ABR waveforms with clear Peak V latency data and response

(Dirac-delta response) waveform as that shown in Figure S2B. Only
babies with high signal to noise ratio of the output were included
with clear peak prominence of the waveform and Peak V latency
information available.

In set 2, we had these responses as in Figure S1C including three
dB levels (70, 75, and 80 dB). We divided set 2 into samples denoted
L1, babies with multiple trials per dB level, and L2–L3, babies with
trials for one or two of the dB levels to be used in pooled data
and bootstrapping analyses. For our inclusion criteria, we ensured
similar instrumentation and inspected the data for high-quality
signals and as variable demographics as possible. Exclusion crite-
ria were noisy and/or incomplete sets of data.

This second set (sample of representative demographics shown
in Figure S1 and Table S1) comprised 54 babies, 30 having received
the ASD diagnosis years later. The data available comprised full
waveforms for 3 dB levels (μV) vs. time (recorded at 25 kHz) as in
Figure S2C. The data also had latency peak data for peaks I to VII
(ms). These are shown in Figure S6, where we report individually
for each peak, the response latency histograms of ASD vs. non-
ASD babies. The pairwise P-values from statistical comparison are
in Figure S6H. Figure S7 provides the lower triangular similarity
matrix (because it is a symmetric matrix) of pairwise comparison
of these frequency histograms. These differences are measured
using a proper distance metric, the Wasserstein–Kantorovich dis-
tance metric (a.k.a. the Earth Movers’ Distance metric) (23–25) to
assess if large effects are present in the data. This set had addi-
tional information on birth weight (BW) and estimated gestational
age (EGA), which were used in Figure S1 to demonstrate the non-
linear (exponential) nature of neonatal growth and motivate the
need to standardize the waveform using Eq. (1) below. These quan-
tities were also used in other analyses depicted in Figures S5A,
S8A, S8B, and S15. The mean BW in babies who went on to develop
typically was 2.1919 × 103 g (+/− std 1.0739), median 1.9845 × 103

g vs. those who received the ASD diagnosis 1.8273 × 103 g (+/−
std 988.5), median 1,715 g. The mean EGA for noASD babies was
34 weeks (+/− std 5.20), whereas the ASD babies had mean EGA
34.5 weeks (+/− std 4.9), median 31.5.

The third set comprised 69 infants with 18 having received the
ASD diagnosis and, similarly to the second set, it has a skewness
toward males owing to the current deficient pipeline from diag-
nosis to research (26). In this set, we do not have information on
whether the babies were pre-term or full-term.

Methods: Table 1 lists the three sets with the demographics and
breakdown for the babies by sex (XX-F vs. XY-M) with full set of
clean data. In set 1, we include records with full peak prominence
data (μV) and Peak V latency. Information on WBN vs. NICU was
available but no breakdown of PT vs. FT was available. In set 2, we
include babies with at least three full trials inclusive of 70, 75, and
80 dB levels of input each. (Additional babies who had one or two
trials for one- or two-dB levels are included in Table S1. These were
used in pooled-data analyses and in the bootstrapping analyses.)
Set 3 includes clean trials only and breaks down data by sex but
no information for these infants and young children was available
on WBN vs. NICU status at birth.

Quantification and new statistical analyses
Micromovement analyses
Figure S2 explains the derivation of the micro-movement spikes
(MMS), a general datatype that standardizes the time series wave-
forms for further analyses that involves diverse populations,
while preserving the original information on the time stamps
of the peaks and their original amplitude ranges. The notion of

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/2/pgac315/7035935 by guest on 31 M

arch 2023



4 | PNAS Nexus, 2022, Vol. 2, No. 2

Table 1. Number of participants in each cohort.

Set N Age No-ASD later ASD later WBN NICU FT NICU PT

1 187,346
95,393 M
91,953F

Neonates n/a n/a 165,601 21,745

2 54
37 M
17F

Neonates 24
21 M

3F

30
16 M
14F

17 =
6 ASD

11 nonASD

5 =
2 ASD

3 nonASD

32 =
16 ASD

16 nonASD
3 69

42 M
27F

1.8 to 6.9 years 51
28 M
23F

18
14 M

4F

n/a n/a

micromovements has been patented by the US and EU Patent of-
fices based on over 20 peer-reviewed papers (not cited here to min-
imize self-citation) (27). These methods and data are also openly
accessible to the scientific community in zenodo, https://zenodo
.org/record/6299560#.Y3las3bMLcs.

The MMS turn continuous analog signals to digital spike repre-
sentations in [0,1] real numbers range. This data type is built from
normalized deviations of the original waveform from the empiri-
cally estimated mean amplitude. Then these time series of abso-
lute deviations from the mean are normalized using Eq. (1):

MMS = Peak
Peak + Avrgmin−to−min

. (1)

This normalization scales out allometric effects from disparate
head circumferences across babies and permit analyses of the
noise-to-signal-ratios (NSR) of the original time series data and
of their information content. Peak is the local peak value of the
waveform, sandwiched between two local minima, then the av-
eraged value of all points comprising the Peak from minima to
minima is used in the denominator. This is a real value between
[0,1] that nevertheless maintains the original timing of the peak
and can be scaled back to its original physical units. Because the
information comes from data that is traditionally smoothed out
as noise (gross data) in current statistical practices (e.g. Fig. 1),
MMS analysis tends to nonobviously reveal hidden information
that has been missed by well-studied phenomena. The MMS series
consists of quiet times of mean activity interspersed with bouts
of activity away from the baby’s mean baseline. The signature is
personalized. Here, we combine the resting state jitter preceding
the Dirac delta-like pulse and the jitter from the postpulse refrac-
tory period with the pulse, to then extract the MMS from the full
sequence of ABR points collected at 25 kHz.

Stochastic analyses
Figure S3 explains the estimation procedure and shows the an-
alytical pipeline to derive interpretable parameter spaces and to
make empirically informed statistical inferences from the digital
MMS data. This method enables optimal feature identification and
parameter spaces to stratify phenomena in general and uncover
important patterns in the data offering potential targets for treat-
ments. Similarity metric (Earth Mover’s Distance, EMD (24)) can be
used to measure distances between points in abstract probability
space and investigate the rates of stochastic shift. In Figure S3A
the frequency histograms can, thus be easily compared.

Results
In the first cohort of neonates (187,346 viable data/233,915
records), we found large differences in the empirically estimated

probability distribution functions (PDFs) of the peak V latency be-
tween WBN and NICU babies (two-sample Kolmogorov–Smirnov
test, P < 0.01). Cross-sectionally, WBN neonates showed system-
atic trends in decreasing peak latency over 8 weeks postbirth. In
stark contrast, NICU neonates’ peak latencies remained stagnant
throughout this time. This is shown in Fig. 2(A).

This cross-sectional trajectory suggests NICU infants may have
delays in decreasing latencies, signaling a lack of improvement in
transmission speed found in healthy babies over the 8 postnatal
weeks. The results were consistent for male and female neonates,
but WBN females showed a faster trend in latency reduction, to-
ward faster response propagation times (ms). However, this differ-
entiation was far more modest in the female NICU babies. Figure
S4 shows their stochastic shifts across the first 4 weeks of life.

Further analyses of the waveform were carried out by differ-
entiating the response time series comprising 61 and 62 points
(0.2-ms period) for the left and right ear signals, respectively, and
taking the cumulative sum of these values. This information re-
vealed the length of the curve that we obtain from the differen-
tiation. The parameter indicates patterns of amplitude variability
for each group. Shorter lengths spanned by taking this cumulative
sum of the delta values from the differentiation of the original
smooth ABR waveform (the ABR curve) indicate lower variability
and lower amplitude. We, thus obtained all the waveform lengths
per group and randomly selected 100 neonates in each group, to
empirically estimate the family of distributions best characteriz-
ing the patterns of waveform length variability, in an MLE sense.
We coined the waveform length “Distance” and obtained it for
the left and right ears and for males and females (Fig. 2B). The
continuous Gamma family of probability distributions was the
best fit for this parameter. It revealed fundamental differences
in such patterns, depicted in Fig. 2(B) along a parameter plane
spanned by the empirically estimated Gamma moments (mean
and variance). These are shown for the right and the left ear and
for the males and females of each of the ASD and non-ASD groups
and for each of the first 4 weeks of life (taken cross-sectionally).
We see the shorter trajectories of the NICU babies, denoting a
profound lack of variability in the waveform and lower ampli-
tude signal than the WBN neonates (Wilcoxon rank sum test,
P < 0.01).

We then obtained, for each group and week, the interaural dif-
ferences by subtracting the latencies at which peak V were at-
tained. This analysis revealed marked differences in the cross-
sectional trajectories spanned by the mean vs. variance values,
which were best fit by a normal distribution, according to MLE.
These are shown in Fig. 2(C).

Such detectable differences across WBN and NICU babies dur-
ing the first weeks of life prompted the analyses of the second data
set, which also included Full Term (FT) and Pre-Term (PT) babies
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Fig. 2. Differentiating neonates’ typical neurodevelopment and those resulting in an autism diagnosis. (A) Neonatal Intensive Care Unit (NICU) vs. Well
Baby Nursery (WBN) neonates received the ABR test. Cross-sectional data reflecting the median minimum latency (in milliseconds) of peak V, taken
across babies who received the test at each of 8 weeks after birth in the subset of 230 + K neonates. NICU babies tend to maintain the same level of
latency, while WBN babies are trending downward, toward faster responses as weeks go by, also distinguishing between males and females. (B)
Examination of patterns of variation in the waveforms’ amplitude from the right and left ear, for 100 randomly selected neonates in each of the first 4
weeks, separates the cross-sectional trajectories of NICU vs. WBN and distinguish between males and females. Distance refers to the length of the
waveform, taken as the cumulative distance from adding each delta value across time of the test. Deltas are obtained from differentiating the smooth
curve representing the ABR waveform. These results extended to the cross-sectional evolution of peak V latencies and their absolute right-left
difference denoting interaural time differences (C). (D) Delayed response latencies and narrow bandwidth of latency ranges in neonates that later
receive the ASD diagnosis. The second neonatal data set, with babies that received an ASD diagnosis, show families of empirically estimated
continuous Gamma PDFs. These emerge from the latencies of the response potential and differ for the ASD vs. non-ASD neonates across each of the I
to VII regions. Log-log Gamma parameter plane spanned by the Gamma shape and scale parameters show for each brainstem region a complete
separation between cohorts. Points represent the PDF’s shape and scale (dispersion), with 95% CI. The ASD-neonates localize in the region of
distributions with lower dispersion and more symmetric shapes. (E) The empirically estimated Gamma moments (mean and variance) emphasize the
differences in (C). The non-ASD neonates have a broader range of latency variability and faster timings than the ASD-neonates. Inset shows empirical
PDFs superimposed for both cohorts, highlighting the shifts in timings (ms) as the response signals propagate along the seven regions.

in the NICU and in the WBN. We asked if fundamental differences
in delayed latencies could be found in this new cohort of babies
who were clinically tracked for the next 4 years.

Importantly, among these babies, we had a group with neurode-
velopmental disorders that went on to receive a diagnosis of ASD
later, after 4 years of life. These ASD babies were compared to
a group that developed along a typical path and did not receive
the diagnosis, (non-ASD.) The peaks’ latency data were examined
for all I to VII peaks using empirical estimation and distributional
analyses of peaks’ fluctuations in amplitudes and latencies, as ex-
plained in Figure S3. More precisely, for each parameter of inter-
est (peaks’ latencies (ms) and waveforms’ features (peaks’ ampli-
tudes and prominences (μV) and peaks’ widths (ms)), we derived
the micro-movements spikes MMS standardized waveform, which
scales out allometric effects due to disparities in head circumfer-
ence across babies. This normalization of the waveforms is im-
portant to ensure appropriate comparisons across different ages
and rates of growth during early neonatal neurodevelopmental
stages. To demonstrate the non-linear rate of growth through the
body weight (g), we show in Figure S1A representative babies of
FT and PT males and females with ASD and non-ASD types, while
panel B shows the exponential fit taken cross-sectionally over the
span of 24 to 41 weeks of EGA for both ASD and non-ASD sets.

Figure 2(D) shows the results of our empirical fit to the I to
VII peaks’ latencies expressed on the Gamma parameter plane.
The continuous Gamma family of probability distributions was
the best fit to the peaks’ latency data, in an MLE sense. As such,
each point on the Gamma parameter plane represents the em-
pirically estimated stochastic signatures corresponding to the la-
tency values of each of the ASD and non-ASD groups when each
peak (I to VII) was detected. The ASD (red) and non-ASD (blue)
span different PDFs for each peak. These PDFs are plotted as
points on the Gamma parameter plane spanned by the shape
axis and the scale axis. Each point is an estimated PDF with the
95% CI for each of the shape and scale (dispersion) parameters of
the continuous Gamma family of probability distributions. This
family was the best fit in an MLE sense (over other distributions
such as the lognormal, the normal, the Weibull and the expo-
nential), for the frequency histograms of the latency correspond-
ing to each peak and group. We note that there are unambigu-
ous differences between the ASD and non-ASD groups for each
of the seven peaks. Furthermore, we note that in Fig. 2(E), where
we plot the PDFs along the continuous timeline (ms) the ASD
group is systematically lagging, with cumulative delays reflecting
how the response to the pulse propagates along the brainstem
sites.
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Fig. 3. Zooming into the empirically estimated family of continuous Gamma probability distributions characterizing the ASD and non-ASD cohorts of
54 neonates. Each plot compares the two ASD vs. non-ASD PDFs for a site (I to VII) and clearly demonstrates the (cumulative) delays in the ASD group
along with the narrower bandwidth of values. Brainstem schematic is included for visualization purposes.

We also highlight the difference in distribution dispersion
(width) signaling broader ranges of latencies in the non-ASD group
and a pronounced reduction in latency range in the ASD group.
This implies a much narrower bandwidth in processing sounds’
frequencies for the ASD group. The richer variability and system-
atically shorter latencies of the non-ASD group can also be appre-
ciated in Fig. 2(E), where we plot in the inset, the plane spanned
by the empirically estimated first two Gamma moments (mean
and variance) corresponding to the PDFs in the inset. To better
see these results, we plot at scale each empirically estimated
Gamma PDF for each peak along the anatomical regions of the
brainstem.

Figure 3 displays each PDF per peak, to show the differences
in propagation delays more clearly. The cumulative effect across
these sites of the brainstem revealed 1.74 ms delay, with 0.40 ms
as the longest local delay for ASD in region VII, while region III had
the shortest delay 0.05 ms. Table S2 summarizes all latencies (ms)
across the seven points of interest for each participant type. The
ASD neonates show a net cumulative latency of 8 ms vs. 7.62 ms
in the non-ASD neonates. Considering that sound processing oc-
curs at a microseconds time scale, these delays in latencies found
in the ASD babies are very large. We later discuss potential ram-
ifications of these persistent delays and narrow bandwidth of la-
tencies range found across all regions of the brainstem of the ASD
babies.

These results are expanded in Figures S5 to S7, where we per-
form nonparametric statistical comparisons across group types.
For example, Figure S5A expands the systematic shifts in peak la-
tencies for males and females in each of the ASD and non-ASD
groups while also providing information on the body weight (g)

proportional to the marker size. This is also done for the Bayley’s
score ranges in Figure S5B. Importantly, Figure S6(A) to (G) pro-
vides frequency histograms of latencies for each peak and ASD
vs. non-ASD. The comparison matrix in panel H, is derived us-
ing nonparametric Kolmogorov–Smirnov test via bootstrapping by
drawing from the larger set the number of measurements of the
smaller set and forming 100 distributions. The median P-value is
obtained to construct a pairwise matrix of comparisons for each of
the seven sites and for the ASD vs. non-ASD groups. This matrix is
then color-coded by scalar P-value and entries with two asterisks
are significant P < 0.01, while those with one asterisk are P < 0.05.
Figure S7 then expresses the lower-triangular matrix comparing
pairwise the frequency histograms of such latencies in I to VII
peaks representing the brainstem regions. To that end, we em-
ploy a proper distance metric to measure the differences between
frequency histograms and color code the entries of the matrix ac-
cordingly (using the normalized value of the Earth Movers’ Dis-
tance.)

Figure S8 expands from a cross-sectional population to a per-
sonalized approach by localizing individual body weight (g) and
sex signatures for each group. These plots are also informed by
clinical scores and waveforms’ features that were never exam-
ined before. These include microfluctuations before and after the
Dirac-delta (explained in Figure S2) and converted to MMS time
series of normalized peaks’ amplitudes, prominences, and widths,
whereby we scale out allometric effects of e.g. disparity in head
circumference. We note here that these results are skewed toward
ASD males due to the insufficient number of females in any ran-
dom draw of the population (current ratio of 4.5 to 5 ASD males
per each ASD female (28)).
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Fig. 4. Differentiating the peaks’ prominences in the ABR from typically developing (TD) young children (1.8 to 6.8 years old) and those with an ASD
diagnosis. (A) Gamma PDF parameters empirically estimated using MMS derived from fluctuations in the waveform in males vs. (B) females. (C) Slope
vs. intercept fitted to the scatters in (A) and (B) differentiate males from females within and between the groups, and ASD from non-ASD children. The
histograms of the delta value capturing the goodness of the linear fitting to the log–log scatter, separate each ASD from non-ASD across the groups of
females and males (D) and (E) Corresponding Gamma moments (mean, variance, and skewness) empirically obtained from the Gamma shape and
scale MLE parameters in (A) and (B) and sized according to age in legend, permit visualizing the individualized stochastic signatures.

Further analyses of the waveform’s features (peaks’ promi-
nences, amplitudes, and widths also separated ASD from non-
ASD in full-term vs. preterm babies. Figure S9 shows the unam-
biguous distinction of dB levels (important to assess responses
with precision for therapeutic design.) Figures S10 to S12 show
that these results extend to other features of the peaks. Be-
sides prominences (identified as the best feature to separate
subgroups), the amplitude and widths also serve that purpose.
Results from nonparametric comparisons across dB levels in Fig-
ure S13 show significant differences according to the Wilcoxon
rank sum test.

ABR forecasting ASD in early infancy and
childhood development
As revealed by Figure S1, during early neurodevelopment of the
neonate, there is a highly nonlinear relation between BW and EGA.
As such, assessing the ABR parameters as the system grows and
matures past the first year of life, seemed important (21, 22). It
is possible that with the maturation and growth of the nervous
system (e.g. increased myelination patterns) such disparities in
delayed latencies between ASD and non-ASD children will disap-
pear. Alternatively, we may still find differences during early in-
fancy and early childhood.

To test these propositions, we had access to a third cohort of
ABR data like that of the neonates but involving instead young
infants and young children between 1.8 and 6.8 years of age. Im-
portantly, in this group, 18/65 children received a diagnosis of
ASD, thus providing referencing criteria for the detection of neu-
rodevelopmental derailment. We had access to multiple trials
per child with high signal-to-noise ratio and a clear waveform
pattern collected with 40 kHz sampling resolution. Demographic

information (female vs. male) was also available, thus facilitating
comparisons. Unambiguous statistically significant differences
were found, consistent with those detected in the neonates. The
empirically estimated stochastic parameters of the continuous
Gamma family of distributions are depicted in Fig. 4 using a sim-
ilar format as before.

Figure 4(A) to (D) show the results from our stochastic analyses
of the waveforms’ features. Peaks’ amplitude, derived from differ-
entiating the original waveform and converting it to the standard-
ized MMS, had microfluctuations revealing marked differences be-
tween the ASD and non-ASD groups. Those in the ASD group had a
broader variance over mean ratio, along the scale axis. This differ-
entiation was accentuated by the narrower bandwidth of Gamma
distribution shapes for non-ASD (along the shape axis) that ex-
tended to males vs. females within and between the groups.

To further explore subgroup differences, we found a linear re-
lationship between the log shape and log scale Gamma parame-
ters (Fig. 4A and B). These spanned over two decades of the log
horizontal axis, suggesting a power law-like relation. This rela-
tion prompted us to compute the slope and intercepts of the line
fitting the log–log scatter. A parameter plane spanned by these
two scalar quantities served to localize each cohort, thus reveal-
ing unambiguous differences between ASD and non-ASD in gen-
eral, but also differences between males and females in each of
the cohorts. We note here in Fig. 4 that the differences between
males’ ASD and non-ASD are much broader than that of the fe-
males’ counterparts. The distributions of the delta value measur-
ing the goodness of linear fitting to the log–log scatter in panels
4(A) and (B) and comprising all trials from all children, revealed
in Fig. 4(D) unambiguous differences for each child’s trials in each
group. Other features—peaks’ widths (ms) related to timing and
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peaks’ amplitudes from the baseline value (μV)—revealed congru-
ent patterns (not shown here for brevity). Across the population
of young infants and young children of this study, differences in
ABR parameters were systematically evident between ASD and
non-ASD. Individual differences were also captured in panels (E)
and (F) of Fig. 4, where we plotted the marker size proportional to
age. These results suggest that across the population, differences
found in neonatal stages remain at early infancy and early child-
hood stages.

Discussion
The ABR constitutes one of the most reliable measures of neu-
ral integrity in the cochlear nerve and caudal brainstem pathway,
here also indicating cumulative delays as the sound wave prop-
agates and arrives at the primary auditory cortex in Peak VII la-
tency. In this work, by considering anew the full ABR waveform
and its microfluctuations over repeated trials, we reveal specific
information appropriate to infer the neurological and audiological
status of healthy and special-risk populations. Using new analy-
ses on the gross data that is currently discarded as superfluous, we
found that WBNs show a significant reduction in the latencies of
the peak V during the first 2 months of life. This faster processing
of sound is accompanied by smaller interaural time differences
and broad ranges of variability and amplitudes of their responses
whereby males’ and females’ trends are highly differentiable early
in life. In contrast, this maturation path is different in NICU ba-
bies. They remain stagnant, deprived of a reduction in latency de-
lays for peak V that is also accompanied by narrower ranges of
variability and lower amplitude of the response waveform. Babies
that go on to receive an ASD diagnosis showed profound delays in
the latencies of the ABR across all seven regions of the brainstem.
Furthermore, these neonates showed a systematically narrower
range of latencies for each peak, suggesting poor access to the full
sound frequency spectrum. Thus, the sensory signal transmission
across the caudal brainstem is not only delayed in prodrome ASD.
It is also impoverished in those infants and young children who
years later received the diagnosis. This information obtained at
neonatal stages was consistently confirmed (cross-sectionally) at
infancy and early childhood stages, suggesting the need for early
detection of the problem and early intervention to steer the sys-
tem toward typical ranges. These new analyses could also sepa-
rate male and female participants at this early age. This is impor-
tant, given the male-to-female ratio disparity acknowledged by
current diagnostic criteria of ASD (29).

The present results nontrivially expand ABR analyses provid-
ing a personalized statistical platform amenable to incorporate
into existing hearing screening tools, to perform the same as-
sessment while screening for possible neurodevelopmental de-
railment, without much extra time or cost. Given that ASD com-
prises so many comorbid disorders today, and that there is no
screener that captures the nonlinear dynamical nature of early
neurodevelopment, the present approach would make for a valid
screening tool to forecast neurodevelopmental disorders in gen-
eral. Importantly, cross-sectionally, these differences in ABR pa-
rameters remained beyond the first year of life. As such, they are
consistently detectable throughout critical periods of cognitive
development and physical growth, inclusive of entry-level school
year.

Important prior work had proposed ABR signals as an early
biomarker flagging neurodevelopmental issues (30–34), but no
methods for personalized precision phenotyping at this early age
had been provided that could also identify specific targets for

treatment and track their nonstationary statistical shifts over
time. Here, by considering gross data that is traditionally treated
as superfluous, we were able to assess fundamental differences
in the peaks’ latencies and waveform’s features related to am-
plitude and width. Indeed, peaks’ prominences proved to be the
most informative, although amplitude and width of the peaks
also revealed differences across the groups. We found systematic
shifts in peaks’ latency suggesting delayed arrival of the sound at
each point of interest along the auditory pathway, throughout the
brainstem. Such cumulative delays were accompanied by a signif-
icantly narrower range of latencies, suggesting narrower access to
the bandwidth of frequencies experienced by those neonates and
later in life, by the cohort of toddlers and young children.

There are several important implications of these results. One
is that they provide specific and new targets for early interven-
tion. Perhaps through sound stimulation, and while aiming at (i)
broadening the range of latencies and (ii) shifting the delays of
transmission at each specific peak toward neurotypical ranges, we
could help the system with the ASD signature align those delays to
neurotypical ranges. This would be important for communication
purposes, as with a cumulative average of 1.72 ms delay in sound
processing, there is no coincidence in transmission and reception
of sound signals between two systems (e.g. between a neurotypi-
cal and an ASD system). Furthermore, at processing timescale of
microseconds, time delays in milliseconds would prevent having
an anchor for proper integration of disparate sensory transduc-
tion delays, inclusive of vision, proprioception, and inertial motor
time delays, among other sources that the baby’s brain needs to
predict and compensate for to dynamically interact with others.

Another advantage of having such specific breakdown in ABR
parameters for peaks I to VII is that it may be possible using these
personalized analytics, to specifically target each of the seven
regions to (i) subtype neurodevelopmental disorders accordingly
and (ii) to broaden and to shift the delays using a multiplicity
of inputs. Lastly, the specificity in detection and differentiation
of dB levels facilitates designing of training assays for interven-
tions tailored to the individual’s processing speeds at each of the
I to VII regions. Delayed sound processing could interfere with
the integration of other sensory inputs as well as with sensory-
motor transformations necessary to plan and to perform well-
controlled purposeful actions, to predict their consequences, and
to adapt and generalize them to new environments. These are
all core building blocks of social interactions and communica-
tion, which become evident and detectable by observation only
after 3 or 4 years of age, sometimes even after 6 years of age.
In this sense, there is no need to wait so long to detect a prob-
lem that is present very early in life and has potential mechanis-
tic causal link to higher order social, communication, and emo-
tional behaviors. The latter are precisely the current criteria for
diagnosis.

The type of delayed sound processing under narrow latencies’
ranges found here could indeed interfere with the development
of social interactions and bring uncertainty and anxiety to the
system, thus impacting emotional development as well. During
social interactions, the person’s biorhythmic activities, including
those dependent on sound processing and integration with other
sensory inputs, need to be automatically synchronized for proper
communication and mutual timely exchange of verbal and non-
verbal, gestural cues. Furthermore, the development of a predic-
tive code (35) to anticipate others’ social actions and their con-
sequences, to timely react and smoothly flow during the interac-
tion, could also be impeded owing to such sound processing de-
lays under narrow and low signal information, persistently found
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here across the population from birth to early childhood. For all
these important reasons, it is possible that these early differences
in sound processing could constitute targets for very early inter-
vention.

Prior work across the human lifespan had unveiled scaling
laws of voluntary (35) and involuntary (36) motor maturation
that are violated in ASD. Scaling laws relating human infant’s
rates of growth with rates of neuromotor control development
were also found in babies who went on to develop neurotyp-
ically, violated by 3 months of age in those who experienced
neurodevelopmental derailment (6). Those ontogenetically re-
lated scaling laws of human’s nervous systems’ biorhythmic mat-
uration are congruent with phylogenetic scaling laws relating
brain weight and time to walk (21). As altricial (rather than
precocious) mammals, human babies require the longest time
to mature upright walking patterns. Here, we reproduce scal-
ing laws relating probability distribution parameters character-
izing temporal- and amplitude-related fluctuations of brainstem
biorhythmic response signals. We then use these empirically esti-
mated parametric relations to learn about normative ranges and
to interrogate their departures in babies who later received the
ASD diagnosis. Using these analyses anew, we detected very early
differences as well between males and females in each group.

Conclusion
Keeping in mind the ontogenetically orderly timeline of the hu-
man species’ early neurodevelopment will be key to early de-
tection of departures from neurotypical development with direct
consequences impacting social interactions and communication.
A neonatal screener of neurotypical development is now within
our grasp. Any departure from normative ranges is thus unam-
biguously detectable at birth.
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